
Techniques For Editing Text For TTS Speaking

A DistributedAUDIO White Paper

by G. S. Tjaden, October, 2003

Abstract

This paper presents techniques for editing computer readable text prior to delivery to a TTS
engine so that the text will be spoken more correctly by it. The techniques are typically
implemented as personal computer software. This software performs most of the editing
automatically, detects situations in which the editing cannot be done automatically, notifies a
human operator of these situations, and provides assistance to the operator to resolve them.

Background

Numerous products are available today that transform written information encoded as computer
readable text into speech that is audible and understandable to humans. They fall into a general
classification called Text-to-Speech (TTS). Some of these products are in the form of computer
software that runs on general-purpose computers, such as personal computers, while others are in
the form of special purpose hardware and software. Often these TTS products are embedded in
other products, forming sub-components. An example of a TTS product that is in the form of
software that runs on general-purpose computers and can be embedded as a sub-component of
other products is ETI-Eloquence 5, produced by Eloquent Technology, Incorporated of Ithica,
New York (a division of Speechworks, Inc.).

The core component of TTS software that analyzes the text and transforms it into basic speech
elements is called the speech engine.

The Need For TTS Text Editing

While current TTS products generally do a good job of transforming textual information written
in many natural languages (e.g., U.S. English, British English, French, German, etc.) into speech
that is intelligible and pleasant to hear, no TTS product currently can produce completely
accurate speech. The deficiencies are of several kinds:

First, it is not generally possible to pronounce every word in a given language correctly. For
some words the pronunciation is determined by the context in which they are used. Homonyms,
such as “close” and “record” fall into this class. Some words do not conform to the normal
pronunciation rules of the language. These include special words such as jargon and acronyms
(e.g., “NYSE” or “3COM”). Jargon and acronyms are particularly problematic because new
words of these types are continually being created, especially within professional disciplines
such as business or medicine. Therefore, the developers of the TTS products are not able to

1

incorporate exceptional pronunciations to correct for the non-conformance to the language rules
of these words.

Second, it is not generally possible to determine with perfect accuracy the end of every sentence
within a paragraph. While the rules of grammar of some natural languages specify special
punctuation characters to indicate a sentence end, such as a period at the end of the last word of
English sentences, these indicators are not necessarily unambiguous. In the English language
abbreviations also end with periods. It is sometimes the case that an abbreviation that is not the
last word in a sentence will be followed by a capitalized word (as in “George W. Bush”). And it
is possible that an abbreviation will indeed be the last word in a sentence (as in “Texas is the
largest state in the U.S.”). It is important for TTS products to determine where sentence
boundaries reside so the natural rise and fall of voice pitch during speaking that is used by
human speakers to indicate the position of the words can be reproduced.

Third, in order for a TTS product to produce natural sounding speech it must be able to identify
the correct speech inflexion points within a sentence. For example, very long sentences should
be spoken with pauses in appropriate positions, even though the inflexion points normally
indicated with punctuation, such as commas in the English language, do not appear in the written
form of the sentence with sufficient frequency. Some speech engines do not always identify
these inflexion points, or the correct inflexion to be used.

Finally, written information intended only for reading may contain words, phrases or characters
that should not be spoken, or should be replaced with alternatives more appropriate to being
spoken. For example, an article written for a news magazine may have graphical information,
such as charts or tables, associated with it that are referenced in the article. The references may
be made with a phrase such as “Figure 1” or “Table 2.” Since the figure or table will not be
available to the listener, the reference phrases and some of the surrounding text may need to be
removed, or modified, to be made more appropriate for speaking.

Common Approaches

Many TTS products include capabilities that allow some of these deficiencies to be mediated by
the integrators of the products. These capabilities generally comprise a phonemic annotation
language and a local dictionary.

The phonemic annotation language includes certain special characters, called escape characters.
These escape characters are not normally used in the written form of the language, or at least are
not used in the position within a sentence or word in which they are used as annotations. When
inserted in the text to be spoken they indicate to the speech engine that the characters, word, or
portion of the sentence following should be interpreted differently than would normally be the
case.

In addition to the escape characters, the phonemic language defines a set of special characters
corresponding to each “phoneme” or speech element (e.g., vowels, consonants, diphthongs and
reduced vowels) of the corresponding natural language. For example, the phonemic language of
ETI-Eloquence 5 uses the character “a” to mean the vowel sounded by the letter “o” in the word
“cot,” and the character “A” to mean the vowel sounded by the letter “a” in the word “cat.”

2

Included also are a set of special characters used to indicate the stress (enhanced, reduced, or
none) to be placed upon vowels. For example, the vowel “a” in the word “example” always
should have enhanced stress placed upon it when the word is spoken. Other special characters
are used to indicate that an entire word or phrase should be stressed, and still others to change the
characteristics of the speaking voice, etc.

The local dictionary is used to store word pronunciations that are substituted for those normally
used by the speech engine. These replacement words can sometimes just be respellings of the
word, for example replacing the word 3COM with the word “3-com,” or they may be words
constructed entirely in the phonemic annotation language. TTS products may include a facility
for entering words into the local dictionary. Using this facility the developers of an application in
which the TTS product is embedded, or upon which it is based, can provide it with a unique
vocabulary.

Uses For TTS

A typical use for a TTS product is in a telephone voice response system. In such systems human
callers are queried with speech messages produced using the TTS product. Responses to the
queries are made by callers using the touch-tone keypads of their telephones, and these responses
are used to determine further TTS produced queries or messages, returned to the callers as
speech. Because such voice response systems usually involve a limited vocabulary of words and
a limited set of phrases or sentences, very good speech accuracy can be achieved using the
capabilities provided with the TTS product for locally (resident with the speech engine)
correcting speech deficiencies.

More recently, TTS products have been used in electronic mail messaging systems in which
users call into the system over a telephone and the system reads the messages in the user’s
electronic mailbox aloud to the caller. The TTS product is used to produce speech from the text
of the electronic mail messages. In these more recent applications the TTS product is given the
capability to recognize the unique electronic mail characters, words and phrases (e.g., heading
tags, formatting codes, etc.) that should be eliminated or replaced when the message is spoken.
However, the body portions of the electronic mail messages will not generally use a limited
vocabulary or a limited set of words and phrases. Thus, any words or phrases in the body of the
message that the TTS product can’t speak correctly, because of the above deficiencies, will
remain uncorrected.

A potential use for TTS products is in mobile computer devices, such as laptop computers,
personal digital assistants, cellular telephones and pagers, wherein personalized textual
information is delivered to the devices in order that they can speak the information to the user
upon demand. Because only textual data (rather than digitized speech data) is delivered to the
portable devices, relatively modest data communication bandwidths and smaller local memories
to store the delivered data are required, thereby leading to lower costs. In this usage, as in the
reading of electronic mail messages over the telephone, a generalized method for correcting for
the speech deficiencies of TTS products is required.

One approach to correcting for deficiencies using TTS in portable devices would be to deliver to
the devices a copy of a new local dictionary, or relevant portions thereof, along with the textual

3

data to be spoken. This updated dictionary would them be used when speaking the text. Such a
dictionary can be in general quite large, so the amount of data needing delivery would be
correspondingly increased. Additionally, however, this approach would not correct for
ambiguous sentence boundaries, context sensitive word pronunciations, identification of
inflexion points in sentences, and removal or replacement of improper phrases in the text itself.

Methods for delivering personalized audio information to a multiplicity of remote computer
devices that contain an embedded TTS capability have recently been disclosed by
DistributedAUDIO (U.S. Patents 5,915,238 and 6,122,617 to Tjaden). These methods teach the
editing of computer readable textual information for proper speaking by a TTS product before
the resulting edited text is delivered to the remote devices (that contain the TTS speech engine)
over a data communication network. Specifically these methods include the teaching that textual
information can be pre-edited for speaking by TTS software by removing references to photos
and illustrations, by replacing words with their phonetic or phonemic equivalents, and by
inserting pauses into long sentences. It is also taught that human intervention may be necessary
in performing such editing.

This paper describes some of the techniques developed by DistributedAUDIO for performing the
semi-automatic editing of computer readable textual information so the information will be
spoken correctly by TTS products. The techniques have been implemented in versions of the
editing tool developed by DistributedAUDIO, called the DistributedEDITOR.

Editing With DistributedEDITOR

The DistributedEDITOR is typically implemented as a software program written for an IBM-
compatible PC (personal computer) under a Microsoft Windows operating system. The only
special requirements of the PC for running the software are enough hard disk capacity to store
the editing dictionary and the text files, both those to be edited and archived after editing, enough
main memory to hold the editing dictionary and the speech engine, and network connectivity of
some type to download text files for editing and upload edited files for subsequent distribution to
remote devices where the files will be turned into speech by the end-users.

At the core of the editing program is the master dictionary. It is a table of all the words known to
the editor, along with the phonetically or phonemically correct pronunciation for each word.
Certain flags are also associated with each of the dictionary entries. For some words a subsidiary
dictionary is also required. The size of the master dictionary is quite large (more than 80,000
entries currently). The creation and use of this dictionary is described below in more detail.

When the editing program is being used it displays to the operator on the PC’s monitor the main
user interface (UI), shown in Figure 1. The UI is typically presented as a window, which can be
repositioned and resized by the operator. This UI window contains various controls, such as list
boxes, command buttons, and text boxes, which are used to present information to the operator
and accept input from the operator.

4

Figure 1: The DistributedEDITOR User Interface

There are five major steps in the TTS editing process:

1. Collect files to be edited, called Source files, and store them on the PC’s hard drive, or some
other suitable memory, in a predetermined subdirectory accessible to the Editing program.

2. For each Source file break the text to be spoken into individual sentences stored as one
sentence per record in an associated temporary file, called an Unedited Sink File.

3. For each Unedited Sink File examine every sentence and each word in the sentence for
proper speaking. Store the results in a new file, called an Edited Sink File replacing the
associated Unedited Sink File.

4. (Optionally,) listen to each file and insert speech annotations to produce the appropriate word
emphases, word tones, and phrase-final intonations.

5

5. Store the collection of Edited Sink Files in a unique directory, called an Archive directory, on
the PC’s hard drive or other suitable memory. The Archive directory name uniquely
identifies the publisher of the files and the time and date of editing.

These five steps are supported by the UI of Figure 1, as follows:

The list of Source files available for editing is shown in the Source file list box in the upper left
of the UI. To perform editing the operator must first select the appropriate Publisher from the
Publisher drop-down list box. The formatting of Source files will typically be different for each
publisher or originator of the files, and these differences must be taken into account by the
editing program as it performs Step 2 of the process. Having selected the Publisher, the operator
now selects the date for publication of the edited files, typically either the current day (Today) or
the next day (Tomorrow) from the For drop-down list box.

Next the operator selects one or more of the Source files from the Source file list and presses the
Convert command button. This initiates Step 2 of the editing process. During the execution of
this step the editing software may detect certain situations that it cannot resolve automatically.
When it does it interrupts the execution of the program and displays a dialogue window on top of
the UI explaining the issue and providing various options and functions for the operator to use to
resolve it. After resolution by the operator the program continues from where it was interrupted.
When this editing step for each selected Source file is completed the file is added to the Sink file
list in the upper right of the UI. The new file is given a file name differing from the file name of
the Source file only in that the file extension (last three characters of the file name) is the
character string “txt”. This file extension is used by the operator and editing software to
determine that a Sink file has completed Step 2, but not yet completed Step 3.

Upon completion of Step 2 the operator may now proceed to Step 3 by pressing the Start
command button. The editing program then selects, in turn, sink files with the “txt” extension
from the Sink file list for the editing process of this step. The topic (e.g., News, Technology)
and format (e.g., Greeting, Summary, Article) of the file’s contents, as determined in Step 2 are
displayed in the Topic/Format box. The title of the file’s contents, also as determined in Step 2,
is displayed in the Title box, and the text of the sentence being edited is displayed in the large
text box under the Title box. As in Step 2, the editing software may detect certain issues that it
cannot resolve automatically, in which case it interrupts execution and displays an appropriate
operator dialogue window. When a Sink file has completed Step 3 it is given a file name
extension of “edt”. This edited file then replaces the corresponding “.txt” file in the Sink file list.

For many types of information files, such as news briefings, Step 4 is not necessary. The TTS
speech engine automatically determines speech inflexions, such as word emphasis and word
tone, and its determination is adequate for such types of information. However, for more
dramatic material, such as books, it is necessary to listen to the files to make sure the automatic
inflexion determination is satisfactory, and correct it if it is not. The control buttons in the Insert
Annotation, Remove Annotation and Speak frames are used to assist the operator in this step. A
further description of this process is included in the later Speech Prosidy section.

Finally, in Step 5, the Source and Sink files are placed in an Archive subdirectory. The process
for doing so is initiated by the operator by pressing the Archive item on the menu bar of the UI.

6

This initiates a dialogue with the operator in which the appropriate subdirectory name is defined,
the files are copied to the subdirectory, and the Source and Sink lists are cleared.

TTS Text Editing Techniques

The fundamental objectives of the Editor are to automate as much of the editing as possible, to
automatically detect where this automation is not possible, and then, in those cases, assist the
operator as much as possible in manually editing quickly and correctly. From a business
perspective, the total editing process should consume only a small fraction of the time it would
require for a human to speak and record the text. This fraction is currently about 10%, and
trending downward. Editing Steps 1,2,3 and 5 have been basic to the DistributedEDITOR from
the very first version. Step 4 has been incorporated more recently, as the types of information to
which the EDITOR is applied has broadened.

Three categories of TTS text editing techniques supported by the DistributedEditor are discussed
below:

1. Identifying and correcting ambiguous sentence boundaries,
2. Replacing incorrectly spoken words with correctly spoken equivalents, and
3. Identifying and correcting inappropriate speech prosidy.

Ambiguous Sentence Boundaries
In the majority of cases, at least for English, sentence boundaries can be automatically identified
using the basic syntax rules of the language. For English, all that is required is to first identify
words (strings separated with spaces) whose last character is a sentence-ending punctuation mark
(e.g., “.”, “?”, “!”, etc.). Then the next word is examined to determine if it begins with a capital
letter. If so, a sentence boundary likely has been identified. The DistributedEDITOR then saves
the sentence as a single line (or record) in a file, and then continues scanning the text to identify
the next sentence boundary.

This algorithm must be tweaked a little to allow for sentences that also end in a non-sentence-
ending punctuation mark, such as single or double quotes, and sentences that begin with
punctuation marks (e.g., a parenthesis or quotation mark (single or double)). Further adjustment
is required for sentences whose first word is or begins with a number (e.g., the word 3COM).

There is one situation where the relatively simple algorithm described above does not always
produce correct results. That is when a word is an abbreviation. An abbreviation, of course,
always ends in a period, so can’t necessarily be distinguished from a sentence end. Sometimes
abbreviations are at the end of a sentence, but sometimes they are not. Some abbreviations that
are not a sentence end are also followed by capitalized words.

Abbreviations do have one common property (other than ending in a period), and that is they are
relatively short in length. The reason for the existence of abbreviations is, after all, that they are
shorter versions of the words they represent. This property is used to semi-automate the removal
of ambiguous sentence boundaries due to abbreviations.

7

As sentence boundaries are being found, words that end in periods and are less then a certain
length are identified as possible abbreviations. For such words a special abbreviation algorithm
is used to further determine if the word is indeed a sentence end.

The first step is to check the word against the master dictionary. Each entry in the dictionary
has, in addition to the correct pronunciation, two flags, called “AlwaysSentEnd” and
“MaybeAbrev”. The values of these flags are determined the first time the word is checked by
the abbreviation algorithm (given that the word already has an entry in the dictionary). The
determination is made by the operator in response to the dialog shown in Figure 2. In this
example the word being checked is the highlighted word “calif.” in the phrase shown.

Irvine, calif. (reuters. High-speed
communications semiconducto

Figure 2: Initial Abbreviation Dialog

Upon seeing this dialog the operator first decides if the highlighted word is never an abbreviation
(will always end a sentence if it occurs as the last word). An example of such a word is the last
word of the last sentence two paragraphs previous to this one, “end”. If so the “Never Abrev.”
Command button should be depressed, causing the AlwaysSentEnd flag to be turned on (set). If
the Never Abrev. button were to be depressed it would then be known that the word is the end of
the sentence, so the dialogue would be closed, the sentence would be saved in the sink file, and
the editor software would then proceed to look for the next sentence boundary.

The word “calif.” In Figure 2 is, however, an abbreviation, so the operator should not depress the
Never Abrev. command button. Instead, in this example, the operator should depress the “Not
Sent. End” button, because the word does not represent a sentence boundary. Doing so causes
the MaybeAbrev flag to be set in the master dictionary indicating that this word sometimes may
be a sentence boundary. The dialogue is then closed and the editing program continues to look
for the sentence boundary.

After the dialogue is closed one (and only one) of the two flags will be set in the master
dictionary. Whenever this word is subsequently encountered a different version of the dialogue,
shown in Figure 3, will be displayed to the operator. In this case the Never Abrev. button is not
displayed, since the MaybeAbrev flag is set in the dictionary. The operator then just selects one
of the two options depending upon whether the word is a sentence boundary or not.

If during editing a potential abbreviation is encountered for which the AlwaysSentEnd flag is set,
the dialogue is not shown at all, because no operator decision is required. Most potential

8

abbreviations are of this nature. Thus, only the first time a potential abbreviation is encountered
is it necessary to take the time to involve the operator in identifying a sentence ending.

Figure 3: Abbreviation Dialogue For Words Previously Tested

Incorrectly Spoken Words
During the third step of the TTS editing process each sentence is checked in turn to make sure
that each word in the sentence will be correctly pronounced. To do so, each word as it is
encountered in the sentence is looked-up in the master dictionary. To keep this look-up from
becoming a bottleneck in the editing process the dictionary look-up algorithm uses a hashing
technique.

Every TTS speech engine is slightly different in the rules used to pronounce the words of a
language, so it is not possible to assume that some known set of words will be always spoken
correctly. Thus, the first time a speech engine is used by the editing program none of the words
will have an entry in the dictionary, and the operator will be asked to decide if the speech
engine’s pronunciation is correct. To assist in making this determination the Speech Dictionary
Manger dialogue shown in Figure 4 is displayed.

The dialogue is displayed with the word to be checked, called Written, entered in the top left text
box. For words not already in the dictionary the written form of the word is also entered in the
Spoken text box in the upper right. As soon as the dialogue is displayed the speech engine is
directed to speak the word in the Spoken text box. Upon comparing the word as entered in the
Spoken text box with what is heard, the operator, assuming they themselves know the correct
pronunciation, can immediately decide if it was spoken correctly. If it was spoken correctly the
operator needs merely to hit the enter key on the keyboard (or depress the Okay button, which is
slower) to cause both forms of the word to be saved in the dictionary and editing to proceed to
the next word. Whenever this word is again encountered the editing software will automatically
replace the Written form of the word with its Spoken form (the same form in this case). Thus,
the operator will never again be asked to check the pronunciation of this word.

The Written word “Broadcom” shown in Figure 4 happens to be a word that is not spoken
correctly by the speech engine used by the version of the DistributedEDITOR for this example.

9

The simplest way, if it works, for the operator to correct the pronunciation is to somehow alter
the spelling of the Spoken form of the word. In this case, merely inserting a hyphen between the
two syllables corrects the problem. This correction is adequate for many compound words, such
as this one. After inserting the hyphen, the operator depresses the Speak button under the
Spoken text box, causing the speech engine to speak that word. If the word is spoken correctly
the operator depresses the Okay button, which saves both forms of the word in the master
dictionary, closes the dialogue, and resumes the editing process. The Spoken form of this word
will henceforth be substituted automatically for the Written form by the editing program.

Figure 4: Operator Correction of Word Pronunciation

In some cases it is not possible to produce a correctly spoken form of a word by merely
respelling it. The operator must then resort to using the speech engine’s phonemic language. To
do so the operator depresses the Phonetic button in the Speech Dictionary Manager dialogue.
This opens a new dialogue, called the Phonetic Word Creator, shown in Figure 5.

When the dialogue opens, the written form of the word (“console”, in this example) has already
been entered into the Written text box in the upper left, but the Spoken text box is empty. In the
rest of the dialogue panel all of the phonetic language elements of the speech engine being used,
in this case ETI-Eloquence 5, are listed as command button labels, along with an example of the
sound or effect produced by the element. The operator merely depresses the appropriate button
to enter the element into the Spoken text box. Depressing the Speak button causes the phonetic
form of the word as entered in the box to be spoken by the speech engine.

The operator edits the phonetic form until it is correctly spoken. If any of the phonetic rules are
violated a message box describing the violation is displayed to the operator, preventing that
version from being used. For example, ETI-Eloquence 5 requires that there be at least one vowel
and one primary stress mark in a word. Then, when satisfied with the phonemic form of the

10

word, the operator depresses the Okay button to cause it to be transferred to the Spoken text box
in the Speech Dictionary Manger dialogue, and close the Phonetic Word Creator dialogue.

Figure 5: Creating A Phonemic Word Form

The operator then completes the editing of this word by accepting its phonemic form in the
Speech Dictionary Manger, causing it to be saved in the dictionary. Once entered into the
dictionary the word will automatically be replaced with its phonemic equivalent during editing
step 3. For example, the sentence shown in the editing text box in Figure 1 contains the word
“row”. The edited form of the sentence is shown in the figure, with the word “row” replaced by
its phonemic equivalent. The symbols on either end of the phonemic form are the escape
symbols that tell the speech engine that the form is the phonemic, not the natural language form.

The word “close” (and the word “row” in the above example) belongs to a class of words called
homonyms. These are words that have a single spelling, but different pronunciations depending
upon context. For example, in the sentence “The market close was close to a high.” the word
“close” is pronounced two different ways. Some speech engines attempt to recognize homonyms
and to adjust their pronunciation automatically. Experience has shown that the algorithms used
to do this are not perfect, and sometimes are far from perfect. Thus, the DistributedEDITOR
provides special support for editing homonyms for speaking.

When a word is being entered into the master dictionary for the first time the operator should
recognize if it is a homonym. If so, the Except button in the Speech Dictionary Manager

11

dialogue of Figure 4 is depressed. This opens a new dialogue, called the Exception Dictionary
Manager, shown in Figure 6.

Figure 6: Dialogue For Words With Multiple Pronunciations

In Figure 6 the two forms of the word “close” are shown. One form is a purely phonemic form.
The other is simply a (phonetic) respelling of the word which causes the speech engine to speak
it correctly. The operator either edits the words in the Exception Dictionary Manager dialogue,
or depresses the Phonetic button to open the Phonetic Word Creator dialogue described above.

Words that can have more than one pronunciation are kept in a secondary dictionary, called the
exception dictionary. The master dictionary stores a special string in place of the spoken form of
the word for such “exception” words. If this string is encountered during editing the Exception
Dictionary Manager dialogue is displayed. Editing is paused while the operator selects the
correct form of the word to use. Thus, while editing homonyms for TTS speaking cannot be
fully automated, the DistributedEDITOR allows for semi-automatic editing to be performed very
quickly.

There are still other classes of words that can have multiple pronunciations. These are numbers,
hyphenated words, and slashed (/) words. Such words also always require operator intervention.
However, it is not possible (or necessary) to store the various forms in a dictionary for lookup.
Instead, the DistributedEDITOR computes the possible forms each time such a word is
encountered, and displays the alternatives to the operator for selection. Not all of these
computed forms will always apply to the specific context in which the word is used.

While some speech engines have the capability to speak numbers in different ways, they cannot
in general determine which is always the correct version to use. Rather, a parameter is set in the
speech engine if, for example, it is known somehow that telephone numbers or zip codes will be
spoken. All numbers encountered will then be spoken according to the parameter setting until it
is changed. General information, such as news, will have a mixture of the different forms, and
the correct form cannot be predetermined in a general way.

Figure 7 shows the Number Pronunciation dialogue box that is displayed when a number is
encountered. In this example the number “500” is shown in its four possible forms. Depressing
the command button for the desired form causes it to be inserted into the text and editing to
resume.

12

Figure 7: Alternative Number Pronunciations

Hyphenated words, an example dialogue for which is shown in Figure 8, can have three possible
forms, each of which has two variants. Sometimes the hyphen should just be replaced with a
space, forming two individual words. Other times the hyphen should be replaced with the word
“to” or the word “and”. If the number 0 is included in one or both of the words, that number
sometimes should be pronounced as the letter “O” and sometimes just as the number itself.

Figure 8: Spoken Forms of Hyphenated Words

Slashed words, an example dialogue for which is shown in Figure 9, can have three forms.
Either the slash is replaced with a space, with the word “to”, or the slash is retained. The result
of speaking a slashed word in which the slash is retained will depend on the speech engine
implementation.

After the operator selects the correct form of a hyphenated or slashed word by depressing the
command button for it, the form is inserted into the text being edited. The editing program than
rechecks the text from the point at which the insertion was made so that any resulting new
individual words will themselves be checked against the master dictionary.

13

Figure 9: Spoken Forms of Slashed Words

Speech Prosidy
The rise and fall of speech pitch and the pacing of speaking is called prosody. While most
speech engines do a good job of inserting prosidy into the speech they produce, their
performance is not always adequate.

One type of prosodic deficiency is encountered in long sentences in which no or few prosodic
punctuation marks (e.g., commas) appear. A special editing technique that semi-automatically
corrects for such situations is sometimes useful, and has been implemented in some versions of
the DistributedEDITOR. This technique is based on the fact that natural pauses in speaking a
sentence often occur just before a prepositional phrase.

During editing the EDITOR keeps track of the number of words since the last comma
encountered. If this count grows larger than a set limit the editing program looks for the first
previous preposition after the most previous comma. It finds such prepositions by checking each
word against a list of know prepositions. If a preposition is found a comma is automatically
inserted after the word preceding the preposition. If not, editing is halted, the editing cursor is
inserted at the stopped position in the sentence displayed in the editor’s user interface, and a
warning message is displayed to the operator instructing them to manually insert a comma in the
sentence.

With usage over time the list of prepositions has grown. It also now includes some words which
are not actual prepositions, but which usually will result in natural sounding speech if a comma
is inserted after the preceding word.

In addition to pauses there are at least three other types of speech inflexions, word emphasis,
word tone, and the final intonation of phrases. As mentioned previously. for certain types of
information files, such as news briefings, more recent speech engines do an adequate job of
automatically producing these types of inflexions. However, for more dramatic material, such as
books, it is necessary to listen to the files to make sure the automatic determination is
satisfactory, and correct it if it is not.

14

15

To perform this prosodic editing with the DistributedEDITOR, the user loads each file in turn by
selecting the edited file from the file list and pressing the Load button (see Figure 1). To then
listen to the file the users presses the All button in the Speak frame at the bottom of the screen.
Or, presses Sent. to speak just the current sentence. Pressing Stop at any time will stop the
speech. If an inflexion is not correct, the user stops the speech and inserts the needed
annotations into the sentence by placing the cursor at the appropriate place in the sentence and
pressing the appropriate button in the Insert Annotation frame under the text box.

As shown in Figure 1, for the ETI-Eloquence 5 speech engine the EDITOR supports five word
emphasis annotations. They are called, from left to right in the figure, Reduced, None, Normal,
Added and Heavy. Six word tone annotations are supported. Again from left to right, they are
called Low, High, Falling, Rising, Scooped and Downstepped. Finally, three phrase-final
annotations, called Small Rise, Continuation Rise, Flat-High and Large-Fall, are supported.

After inserting an annotation the user should listen to the sentence to make sure the needed effect
is produced. If not, the annotation can be removed using the buttons in the Remove Annotation
frame. Multiple annotations may be inserted into a sentence. Emphasis and Tone annotations
are inserted immediately preceding the word to which they apply, while Phrase-Final annotations
must be inserted immediately preceding a punctuation mark.

Some speech engines also support the insertion of annotations to control pauses. While the
current version of the DistributedEditor does not support these, it could easily do so using the
same approach as for word emphases, word tones and phrase-final inflexions. This could be in
place of or in addition to the above described automatic pause insertion technique.

Conclusion

Since each speech engine is somewhat different, the implementation of the DistributedEDITOR
for it must usually be somewhat customized. Contact us at info@DistributedAUDIO.com to find
out how we can help you with your TTS text editing needs.

mailto:info@DistributedAUDIO.com

	Abstract
	Background
	The Need For TTS Text Editing
	Common Approaches
	Uses For TTS
	Editing With DistributedEDITOR
	TTS Text Editing Techniques
	Ambiguous Sentence Boundaries
	Incorrectly Spoken Words
	Speech Prosidy

	Conclusion

